فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    13
  • شماره: 

    2
  • صفحات: 

    112-122
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1059
  • دانلود: 

    286
چکیده: 

شبکه خودسازمانده پویا با یادگیری نیمه ناظر در بسیاری از کاربردها نظیر خوشه بندی داده ها کاربرد دارد. محاسبه پارامترهای شبکه خودسازمانده شامل شکل و ساختار لایه خوشه بندی، سطح فعال سازی و وزن های لایه طبقه بندی از جمله مسایل چالش برانگیز و مهم آن است. راهکارهای ارائه شده فعلی از روش های ابتکاری و با یک نگاه محلی سعی در تعیین این پارامترها دارند که در اثر آن، نتایج این الگوریتم ها وابستگی بالایی به شرایط دارد. این مقاله یک روش یادگیری نیمه ناظر مبتنی بر شبکه خودسازمانده پویا و یادگیری حداکثری را برای اولین بار مورد بررسی قرار می دهد. روش پیشنهادی، بدون محاسبه مستقیم پارامترهای شبکه خودسازمانده پویا و با استفاده از روش یادگیری حداکثری، کلاس هر داده را تعیین می کند. خطای حاصل از بازخورد سیستم، هم در یادگیری حداکثری و هم در بهینه سازی شبکه خودسازمانده پویا مورد استفاده قرار می گیرد. در این مقاله، علاوه بر بررسی تحلیلی همگرایی روش پیشنهادی، روش حداکثری ترتیبی برای شبکه نیمه ناظر خودسازمانده پویا ارائه شده است. آزمایش های انجام شده بر روی داده های برخط و با برچسب جزئی نشان می دهند که روش پیشنهادی از نظر دقت، نسبت به روش نیمه ناظر خودسازمانده پویا برتری نسبی دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1059

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 286 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    7
  • شماره: 

    3 (25)
  • صفحات: 

    15-32
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    316
  • دانلود: 

    0
چکیده: 

Exploiting multimodal information like acceleration and heart rate is a promising method to achieve human action recognition. A Semi-Supervised action recognition approach AUCC (Action Understanding with Combinational Classifier) using the diversity of base classifiers to create a high-quality ensemble for multimodal human action recognition is proposed in this paper. Furthermore, both labeled and unlabeled data are applied to obtain the diversity measure from multimodal human action recognition. Any classifiers can be applied by AUCC as its base classifier to create the human action recognition model, and the diversity of classifier ensemble is embedded in the error function of the model. The model’s error is decayed and back-propagated to the basic classifiers through each iteration. The basic classifiers’ weights are acquired during creation of the ensemble to guarantee the appropriate total accuracy of the model. Considerable experiments have been done during creation of the ensemble. Extensive experiments show the effectiveness of the offered method and suggest its superiority of exploiting multimodal signals.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 316

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 1
نویسندگان: 

VASOU JOUYBARI M. | Ataie E. | Bastam M.

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    195-204
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    249
  • دانلود: 

    83
چکیده: 

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine Learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using Deep machine Learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase Learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 249

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 83 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1399
  • دوره: 

    1
  • شماره: 

    2
  • صفحات: 

    17-26
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    980
  • دانلود: 

    180
چکیده: 

در این مقاله یک بستر یادگیری عمیق نیمه نظارتی برای بازسازی سه بعدی از یک تصویر دوبعدی پیشنهاد شده است که در آن به منظور کاهش نیاز به برچسب سه بعدی و دوبعدی از دو بخشِ بدون نظارتِ از پیش آموزش داده شده استفاده شده است. بدین ترتیب با بهره گیری از بخش های آموزش دیده، به منظور آموزش کل شبکه، به داده برچسب دار کمتری نیاز است، علاوه بر اینکه با توجه به استفاده از داده به عنوان تنها منبع دانش برای یادگیری، نیازی به استفاده از فرض های مختلف در مورد چگونگی شکل گیری تصویر نخواهد بود. ایده اصلی در بستر پیشنهادی، یافتن نگاشتی بین فضای های بازنمایی با ابعاد پایین تر دوبعدی و سه بعدی می-باشد. بنابراین بستر پیشنهادی در این مقاله شامل بخش های بدون نظارتِ نگاشت از فضاهای دوبعدی و سه بعدی به بازنمایی های بعد پایین، و بخش نظارتی نگاشت بین بازنمایی های بعدپایین می باشد. نتایج ارزیابی و مقایسه بستر پیشنهادی با چند بستر مشابه موجود روی پایگاه های داده چهره ی انسان، نشان دهنده کارایی مطلوب بستر نیمه نظارتی پیشنهادی در بازسازی سه بعدی از یک تصویر دوبعدی است. این بستر می تواند قدمی مفید در جهت هوشمندسازی فعالیت نیروی انتظامی برای تشخیص چهره باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 980

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 180 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1396
  • دوره: 

    14
  • شماره: 

    1 (پیاپی 31)
  • صفحات: 

    53-70
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1175
  • دانلود: 

    316
چکیده: 

معیار فاصله، نقشی کلیدی در بسیاری از الگوریتم های آموزش ماشین و شناسایی آماری الگو دارد؛ به گونه ای که انتخاب تابع فاصله مناسب، تاثیر مستقیمی بر عملکرد این الگوریتم ها دارد. در سال های اخیر، آموزش معیار فاصله با استفاده از نمونه های برچسب دار و یا دیگر اطلاعات موجود، یکی از حوزه های بسیار فعال در حوزه آموزش ماشین شده است. پژوهش ها در این راستا، نشان داده است که معیارهای سنجش فاصله مبتنی بر یادگیری، عملکرد بسیار بهتری در مقایسه با معیارهای فاصله مرسوم از قبیل فاصله اقلیدسی دارند. با گسترش این الگوریتم ها، نوع مبتنی بر کرنل برخی از این الگوریتم ها نیز ارائه شده که در آنها با استفاده از تابع کرنل، نمونه ها به طور غیر صریح به فضای ویژگی جدیدی با ابعاد بالاتر نگاشت یافته و سپس در این فضای ویژگی جدید، معیار فاصله برای کاربرد مورد نظر آموزش داده می شود. برخلاف عملکرد بسیار خوب توابع کرنل در الگوریتم های مختلف، یکی از مسائلی که در این الگوریتم ها وجود دارد، انتخاب کرنل مناسب و یا پارامترهای مناسب برای یک کرنل مشخص است. استفاده از کرنل مرکب به جای استفاده از یک کرنل به تنهایی، بهترین راه حلی است که تاکنون برای این مسئله ارائه شده است. در فرآیند دست یابی به کرنل مرکب بهینه نیز، استفاده از الگوریتم های یادگیری اهمیت دارد. در این پژوهش، با ادغام این دو فرآیند یادگیری، ساختارهای نیمه نظارتی متفاوتی برای تعیین وزن کرنل ها در یک ترکیب کرنلی ارائه می شود. کرنل مرکب نهایی برای سنجش فاصله داده ها در کاربرد خوشه بندی مورد استفاده واقع می شود. در ساختارهای نیمه نظارتی بررسی شده، سعی بر آن است که در فرآیند بهینه سازی با تعیین تابع هدف مناسب، وزن کرنل ها به گونه ای تعیین شود که فاصله زوج های مشابه کمینه و فاصله زوج های نامشابه بیشینه شود. بررسی عملکرد این ساختارهای پیشنهادی بر روی داده مصنوعی XOR و همچنین مجموعه داده های پایگاه داده UCI نشان دهنده موثر بودن ساختارهای پیشنهادی است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1175

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 316 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

CHANDNA PANKAJ | DESWAL SURINDER | PAL MAHESH

اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    3
  • شماره: 

    4
  • صفحات: 

    291-295
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    312
  • دانلود: 

    0
چکیده: 

This study explores a Semi-Supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-Supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those obtained by a backpropagation neural network. Comparison indicates an improved performance by the Semi-Supervised approach over the random forest classifier as well as neural network approach. Highest classification accuracy of 78.20% was achieved by the used Semi-Supervised approach with random forest as base classifier in comparison to an accuracy of 72.4% and 74.7% obtained by random forest and back propagation neural network approaches respectively. Thus results suggest that the proposed approach can successfully classify jobs into the low and high risk categories of low-back disorders based on lifting task characteristics.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 312

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

Sci Rep

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    13
  • شماره: 

    1
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    7
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

فیاضی حسین | شکفته یاسر

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    93-125
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

In traditional speech processing, feature extraction and classification were conducted as separate steps. The advent of Deep neural networks has enabled methods that simultaneously model the relationship between acoustic and phonetic characteristics of speech while classifying it directly from the raw waveform. The first convolutional layer in these networks acts as a filter bank. To enhance interpretability and reduce the number of parameters, researchers have explored the use of parametric filters, with the SincNet architecture being a notable advancement. In SincNet's initial convolutional layer, rectangular bandpass filters are learned instead of fully trainable filters. This approach allows for modeling with fewer parameters, thereby improving the network's convergence speed and accuracy. Analyzing the learned filter bank also provides valuable insights into the model's performance. The reduction in parameters, along with increased accuracy and interpretability, has led to the adoption of various parametric filters and Deep architectures across diverse speech processing applications. This paper introduces different types of parametric filters and discusses their integration into various Deep architectures. Additionally, it examines the specific applications in speech processing where these filters have proven effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    2
  • شماره: 

    2
  • صفحات: 

    9-18
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    83
  • دانلود: 

    0
چکیده: 

The increment of computer technology usage and rapid development of the Internet and electronic business lead to an increase in financial transactions. With the increase of these banking activities, fraudsters also use different methods to boost their fraudulent activities. One of the ways to cope their damages is fraud detection. Although, in this field, some methods have been proposed, there are essential challenges on the way. For example, it is necessary to propose methods that detect fraud accurately and fast, simultaneously. Lack of non-fraud labeled data and little fraud labeled data for Learning is another challenge in this field particularly in banking. Therefore, we propose a new fraud detection method for bank accounts called SSLBM. In this method, after preprocessing phase, a helpful Learning method called SSEV is used that is based on Semi-Supervised Learning and evolutionary algorithm. The results imply improvement of detection by using SSLBM with 68% accuracy and acceptable speed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 83

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

MEHRIZI A.

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    20
  • شماره: 

    5
  • صفحات: 

    1115-1132
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    108
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 108

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button